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Heterologous complementation in yeast has been a successful tool for cloning and characterisation of genes from
various organisms. Therefore we constructed conditionally lethal Saccharomyces cerevisiae strains by replacing the
endogenous promoter from the genes of interest (glycosyltransferases) by the stringently regulated GAL1-promoter, by a
technique called chromosomal promoter replacement. Such yeast strains were constructed for the genes Alg 1, Alg7,
Sec59, Wbp1 involved in N-Glycosylation, the genes Gpi2, Gpi3=Spt14, Gaal, Pis1, involved in GPI-anchor biosynthesis
and Dpm involved in both pathways. All strains show the expected conditionally lethal phenotype on glucose-containing
medium when expression of the respective gene is turned off.
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Introduction

The yeast Saccharomyces cerevisiae provides a powerful

model system for studying molecular biology of the eucaryotic

cell. Heterologous complementation of conditional lethal

mutants of yeast has been successfully used to isolate

functional homologues from various species. Based on the

high conservation of gene function in cells from different

eucaryotic species, many of the known or unknown essential

genes from yeast are potential targets for heterologous

complementation screens, which depend on the availability

of conditional lethal mutants of the gene of interest. So far

these mutants were mainly temperature sensitive mutants,

which are often dif®cult to handle in complementation screens

and tend to revert with a certain, sometimes high frequency.

We decided to generate conditional lethal mutants of

essential genes by the well-known method of replacing the

natural promoter with the stringently regulated, glucose-

repressed GAL-1 promoter [1]. Such strains are viable on

galactose medium and stop growing on medium containing

glucose as only carbohydrate source when the GAL1-promoter

is turned off. As an example for this approach we wanted to

generate several conditional lethal mutants of genes involved

in protein glycosylation (N- and O-glycosylation and GPI-

anchor biosynthesis) by Chromosomal Promoter Replacement

(CPR).

N-glycosylation plays an important role in protein folding

and quality control in the ER and is crucial for biosynthetic

traf®cking of proteins beyond the ER and throughout the

secretory pathway as reviewed in [2,3]. Glycosyl-Phosphati-
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dylinositol membrane anchors, a principle of anchoring

protein in plasma membranes which ®rst has been described

in Trypanosoma brucei has meanwhile been shown to be, like

N-glycosylation, ubiquitous among eucaryotes. There is a

growing body of evidence that these GPI-anchors exhibit a

variety of functions other than the mere anchoring of

membrane proteins [for review see 4,5,6]. Since glycosylation

is a hallmark of most surface proteins these biosynthetic

pathways play a particularly interesting role in the biology of

parasites since surface antigens and their carbohydrate

structures have to interact with the host's immune system.

Through recombinant DNA technology it should be possible

to clone and express these enzymes which are not readily

accessible due to the often limited availability of parasite

material. Determination of key biochemical parameters for

these enzymes might have a profound impact on the

development of vaccines and new antiparasitic drugs based

on speci®c inhibitors for the parasite enzymes. We therefore

decided to clone and characterise enzymes involved in N-

glycosylation and GPI-anchor biosynthesis by using the

approach of heterologous complementation in yeast. We have

previously cloned the gene for the Dolicholphosphat-Mannose

Synthase from Trypanosoma b. brucei [7], using the tempera-

ture-sensitive yeast strain DPM 1±6 [8]. To circumvent the

problems of a high number of false positives often

encountered with ts-strains we decided to construct syntheti-

cally lethal yeast strains by replacing the endogenous

promoters of these genes by the stringent regulatable GAL1

promoter via homologous recombination, by transfecting yeast

with a His-Gal cassette PCR fragment. The construction of

such strains and their phenotypic characterisation will be

described and their usefulness for the cloning of glycosyl-

transferases will be discussed.

Materials and methods

Materials

Zymolyase 20000 was purchased from Seikagaku Corp.

Tokyo. Restriction endonucleases and other DNA modifying

enzymes used in recombinant DNA experiments were from

Boehringer-Mannheim, New England Biolabs or Stratagene

and were used in accordance with the manufacturer's

instructions.

Strains and Media:

The following Saccharomyces cerevisiae and E.coli strains

were used in this work. YPH 499 [Mat a; ura3-52; lys2-

801amber; ade2±101ochre trpl-D63; his3-D200; leu2-D1] (Stra-

tagene) was used for the construction of the synthetically

lethal strains. S. cerevisiae wild type strains were grown in

YPAD medium (1% Bacto yeast extract, 2% Bactopeptone,

2% dextrose, 4 mg=l adenine) or SD medium (2% dextrose,

0.17% Bacto yeast nitrogen base) and the nutritional

supplements necessary to complement strain auxotrophies.

Recombinant strains were plated on SGR-His after transfor-

mation (4% galactose, 2% raf®nose, 1.5% agar for plates,

0.17% Bacto yeast nitrogen base, 0.5% ammonium sulfate and

the nutritional supplements necessary to complement strain

auxotrophies.)

Recombinant DNA techniques

Standard recombinant DNA techniques were performed

essentially as described by Sambrook et al [9]. Plasmid

isolation from yeast followed the protocol of Hoffman and

Winston [10]. Transformation of yeast was performed

according to [11].

PCR reactions were performed using the Hotwax Optistart

Kit for PCR Optimisation from Invitrogen in accordance with

the manufacturer's instructions. 10 ng Template (pGAL1=
HIS3) and 50 ng of each primer (70 bp) were used for each

PCR. Whole cell PCR was performed using YPH499 as wild

type control and the corresponding promoter mutants for

veri®cation of the correct insertion of the His Gal cassette. The

His GAL1 cassette was constructed by cloning of the GAL1-

promoter-fragment from p416GAL1 into pRS17 [12,13].

Results and Discussion

Strategy of Chromosomal Promoter Replacement (CPR)

The aim of this work was to use a well-known, quick and

reliable procedure to generate conditional lethal yeast mutants

involving various genes essential in glycan assembly. Such

mutants are suitable for use in heterologous complementation

screens. We decided to generate variants of several essential

genes, by bringing their expression under the control of the

stringently regulated GAL1-promoter. This promoter is

induced in the presence of galactose and the absence of

glucose but is tightly repressed in the presence of glucose [1].

This should allow to turn off the expression of any open

reading frame brought under control of this promoter.

We achieved our aim by using the technique of Chromo-

somal Promoter Replacement (CPR) in which the wild type

promoter of an essential gene of interest is exchanged by

the GAL1-promoter (Fig. 1). The promoter replacement is

achieved by a classical one step replacement, in which the

target promoter is exchanged by a selection marker=promoter

HIS3=GAL1-cassette [14,29]. The vector pGAL1=HIS3

serves as a template for the PCR-reaction generating the

GAL1-promoter=HIS3-selection marker cassette ¯anked by

short segments for the homologous recombination. Target

sequences for the homologous recombination were chosen

200 bp upstream of the corresponding ATG-start codon in the

promoter region and at the ATG-start codon of the coding

region. Because homologous recombination in yeast is very

ef®cient the ¯anking regions for recombination can reduced to

50 bp, which allows to generate the HIS3=GAL1-replacement
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cassette by the polymerase chain reaction [11,15,16,28]. For

the ampli®cation of the HIS3=GAL1 cassette and replacement

of the endogenous promoter the primers used have to ful®l two

criteria: One part of the primer (19-mer) is needed for the

ampli®cation of the His3=Gal1 cassette in the pGAL1=HIS3

vector. The second part of the primer (a 50-mer overhang)

must be complementary to the putative promoter region,

approximately 200 bp upstream the gene of interest or to

sequences including the start-codon respectively. Thus the

endogenous promoter of the gene of interest should be

replaced by the Gal1-promotor via homologous recombination

after transformation with the ampli®ed His-Gal fragment as

depicted in Figure 1. The PCR-generated CPR-cassette can

then be transformed into yeast and transformants can be

selected on minimal medium lacking histidine and containing

galactose. Strains carrying the correct integration can be

veri®ed by southern blot or PCR and should show the

expected conditional lethal phenotype when shifted to glucose-

containing medium.

Replacement cassettes of this type were generated for

promoters of the following genes: Dolichol-phosphate-man-

nose Synthase (DPM) [8]; Dolichol-cycle N-acetylglucosa-

mine-1-phosphate Transferase (Alg7) [17,18]; Dolichol-cycle

Mannosyl-I- transferase (Alg1) [19]; Dolichol-Kinase (sec59)

[20]; Phosphatidylinositol-synthase [21]; N-oligosaccharyl-

transferase-subunit (Wbp1) [22]; GPI-N-acetylglucosaminyl-

transferase 2 (Gpi2) [23]; GPI-N-

acetylglucosaminyltransferase 3 (Gpi3=Spt14) [23,24]; GPI-

Protein-Transamidase (Gaal) [25]. Sequences of the oligonu-

cleotides used and their locations in the corresponding

promoters relative to the ATG-start codon are shown in Table

1.

Transformation of 1mg of the respective PCR-fragment into

the haploid strain YPH499 yielded routinely 5±25 transfor-

mants on galactose containing plates lacking histidine. Over

90% of the transformants showed the expected conditional

lethal phenotype when plated under non permissive conditions

on glucose medium (Fig. 2). Depending on the modi®ed gene

some strains showed a residual slow growth for 10±30

generations on glucose plates, probably due to differences in

mRNA- and=or protein-stability of the corresponding proteins.

The correct insertion of the His-Gal fragment into genomic

DNA was con®rmed by whole cell PCR using primers 5
0
and 3

0

adjacent to the integration sites. The sizes of the PCR

fragments were veri®ed by agarose gels with corresponding

fragments from YPH 499 as control (Fig. 3). To ®nally

con®rm that the lethality was due to repression of the gene in

question, the strains were transformed with plasmids harbour-

ing the corresponding wild type yeast genes. For all strains

rescue of the conditional lethal phenotype was observed (data

not shown).

Heterologous complementation of CPR mutants

To ®nally con®rm the usefulness of these synthetically lethal

yeast strains for heterologous complementation screens, the

strain YPH-GAL1-DPM was transformed with the previously

cloned Dol-P-Man synthase from T. b. brucei [7] and was

tested for the ability to grow on glucose only. Transformants

harbouring the recombinant T. b. brucei gene showed the

expected phenotypic conversion (Fig. 4) thus con®rming that

CPR strains can be used for the cloning of genes by

heterologous complementation

In addition the yeast strain YPH-GAL1-ALG7 was

transformed with a human cDNA library constructed from

human lung ®broblasts. 250 000 transformants were plated on

SD=His-medium, yielding 18 colonies growing under these

conditions. After a second screening step for loss of plasmid

by plating on FOA-medium [26], one clone could be identi®ed

as the human N-acetylglucosamine-1-phosphate Transferase

[27]. These results con®rm the main objective of the cloning

strategy presented here; cloning of genes by functional

complementation in yeast with only a few false positives to

be eliminated in a subsequent screening step.

Figure 1. Schematic outline of the chromosomal CPR recombina-
tion. A: the vector pGAL1=HIS3 containing the GAL1=HIS3
cassette with the positions of the PCR primers being indicated.
B: Postulated recombination event between the ampli®ed GAL1=
HIS3 cassette and the promoter region of the gene in question. C:
Scheme of the cassette integrated into the yeast chromosomal
DNA immediately upstream the targeted open reading frame.
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Table 1. Compilation of the oligonucleotides used for the PCR-ampli®cation of the HIS3=GAL1 promoter replacement cassettes. The
sequences are written in the conventional 5

0
-3
0

direction. Sequences homologous to the vector are printed in italics. The 5
0
-primer is com-

plementary to the putative promoter region, approximately 200 bp upstream the gene of interest and the 3
0
-Primer is complementary to the start

of the open reading frame, beginning with the start codon ATG (see complementary TAC in each sequence next to the italicised vector
sequence, underlined).

DPM 5
0

TGTAATACAATATCATTCTATAGCACTCGCATCGCGTATTTTTTTTTTATTTT GGGCGAATTGGAGCTCCAC
3
0

ATGTTCAGCTTTTCATGGTAAGCGGGAACGATAACAGAGTATTCGATGCTCAT GGGGATCCACTAGTTCTAG

Sec59 5
0

TCTAGATGTATGGGTGTGCGGGAATGCTAAGATACGTTATTGAGGGCTGTCCG GGGCGAATTGGAGCTCCAC
3
0

TTCTGGGTTAGTTTAATTGTGGTAAAGGAAGCATGAGGTATTATAGCGACCAT GGGGATCCACTAGTTCTAG

Alg7 5
0

GTTACGAATACAAACACAGAGGTTGATGCATGAATTTTTTCTAGCTACTACCA GGGCGAATTGGAGCTCCAC
3
0

TTGGAATAGTAGATTAAGCATGTGATAAGTGCCAGTGAAAAAAGTCGCAACAT GGGGATCCACTAGTTCTAG

Pis1 5
0

TGAGATGAGATGAGATGAGCTCTAAATTTCCATAAAATTTTTTCATTTTATAA GGGCGAATTGGAGCTCCAC
3
0

TACCACAGAACGTGTTCTGCAGTAACCTTTTCTGGTGTTGAATTCGAACTCAT GGGGATCCACTAGTTCTAG

Gpi2 5
0

TAAACCAATTTAAAGGTACAATCACACTTTAAGTATTGTTGTTAGACGGT GGGCGAATTGGAGCTCCAC
3
0

CTGGGTACTCCTGTTTCAACCATAGTAGGCGCTTCCAGGGAGATCTTGTCAT GGGGATCCACTAGTTCTAG

Spt14 5
0

CCTTTGTATACTCATATGCGAACTTGTCTAATACAATGTATACCAAAAATAA GGGCGAATTGGAGCTCCAC
3
0

ATGTATTTGGAACACATGCTGTGAGCTAGACATACGCTATATTGAAGCCCAT GGGGATCCACTAGTTCTAG

Gaa1 5
0

CCTAGAAAGGTTGAAGCTTATAAAACCGTGCCAACAGCTTTATAGTGGGG GGGCGAATTGGAGCTCCAC
3
0

GGGACAAGCCCCATATCAACAATCCTTCGATGCAACTTCTCCAATAAGGCCAT GGGGATCCACTAGTTCTAGC

Alg1 5
0

TCAGGTTCTACTTATGTTTGCTTTGTCGATTTTTGCATGCTTTGACTGTGACT GGGCGAATTGGAGCTCCAC
3
0

GAAAGGTATAATATTATTAAGGCAAGTAACCACCGAGGAATTTCCAAAAACAT GGGGATCCACTAGTTCTAG

Wbp1 5
0

GGGGCTCTCATTGTTTTATAGATACATATTAGTATACTACAATTAAAGATATC GGGCGAATTGGAGCTCCAC
3
0

ACGAAAATGGCCTGCAGAAGGATACAAAAGAAAAAATTCCAATCGGTCCGCAT GGGGATCCACTAGTTCTAGC

6
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Conclusions

The data presented here con®rm that synthetically lethal yeast

strains can easily be constructed by promoter replacement via

homologous recombination as long as the genes of interest

are essential like those for N-glycosylation or GPI-anchor

biosynthesis. By using the stringent regulated GAL1 promoter

growth of the recombinant yeast strains can be controlled

easily by simply plating them on Galactose=Raf®nose or

Glucose respectively. These strains can thus be used for the

functional cloning of genes by complementation by plating

them under non permissive conditions (SD) after transforma-

tion with expression cDNA libraries as could be demonstrated

by the cloning of the human GlcNAc-I-P-transferase.

The CPR-strains described here are now being used to

isolate the respective genes from cDNA libraries from humans

and parasitic protozoans. CPR-strains dependent on the

expression of cDNAs from other species can be applied

directly to in vivo tests of already known drugs which inhibit

those gene products. Furthermore they can be used to isolate

new species speci®c drugs in high throughput screens. This

strategy of using CPR-strains could in principle be adapted

to every disease-relevant protein which can complement the

function of an essential yeast gene.
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